Loading...
 

Keynotes



We are thrilled to welcome the following keynote speaker(s).

Valiant, Leslie

Leslie Valiant

Harvard University, United States


Biological Evolution as a Form of Learning

Abstract

Living organisms function according to protein circuits. Darwin's theory of evolution suggests that these circuits have evolved through variation guided by natural selection. However, it is currently unknown what variation mechanisms can give rise to protein circuits of the complexity found in biology, within realistic population sizes and realistic numbers of generations.

We suggest that computational learning theory offers the framework for investigating this question, of how circuits can come into being via a Darwinian process without a designer. We formulate evolution as a form of learning from examples. The targets of the learning process are the protein expression functions that come closest to best behavior in the specific environment. The learning process is constrained so that the feedback from the experiences is Darwinian. We formulate a notion of evolvability that distinguishes function classes that are evolvable with polynomially bounded resources from those that are not. The dilemma is that if the function class that describes the expression levels of proteins in terms of each other, is too restrictive, then it will not support biology, while if it is too expressive then no evolution algorithm will exist to navigate it. We shall review current work in this area.

Biosketch

Leslie Valiant was educated at King's College, Cambridge; Imperial College, London; and at Warwick University where he received his Ph.D. in computer science in 1974. He is currently T. Jefferson Coolidge Professor of Computer Science and Applied Mathematics in the School of Engineering and Applied Sciences at Harvard University, where he has taught since 1982. Before coming to Harvard he had taught at Carnegie Mellon University, Leeds University, and the University of Edinburgh.

His work has ranged over several areas of theoretical computer science, particularly complexity theory, learning, and parallel computation. He also has interests in computational neuroscience, evolution and artificial intelligence and is the author of two books, Circuits of the Mind, and Probably Approximately Correct.

He received the Nevanlinna Prize at the International Congress of Mathematicians in 1986, the Knuth Award in 1997, the European Association for Theoretical Computer Science EATCS Award in 2008, and the 2010 A. M. Turing Award. He is a Fellow of the Royal Society (London) and a member of the National Academy of Sciences (USA).